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NATTONAL ADVISORY COMMITTEE FOR AERONAUTICS

TECHNICAL NOTE 2834

FLOW SURFACES IN ROTATING AXTAL-FLOW PASSAGES

By John D. Stanitz and Gaylord O. Ellis

SUMMARY

In order to investigate the deviation of flow surfaces from their
assumed orientation in the usual type of two-dimensional solution, three-
dimensional, incompressible, nonviscous, absolute irrotational fluid
motion is determined for flow through rotating axial-flow passages
bounded by straight blades of finite spacing and infinite axial length
lying on meridional planes. Solutions are obtained for five passages
with varying blade spacing and hub-tip ratio. The results are presented
in such a manner as to apply for all ratios of axial velocity to passage
tip speed. It is concluded that, for conditions in typical axial-flow
blade rows, the deviation of flow surfaces from their assumed orienta-
tion in two-dimensional solutions is small. v

INTRCDUCTION

A flow surface in the passage between two blades of a compressor
or turbine is generated by the motion through the passage of any fluid
line consisting of the same fluid particles and extending from one
boundary to another in a plane normal to the axis of rotation. In two-
dimensional analyses of flow in compressors and turbines, the fluid
motion is usually assumed to occur on flow surfaces that are: (1) sur-
faces of revolution about the axis of the turbomachine (blade-to-blade
solutions, references 1 and 2, for example) or (2) mean passage surfaces

" that are congruent with the mean blade surfaces (hub-to-shroud solutions,

references 3 and 4, for example). Actually, the flow surfaces deviate
from the orientation assumed for the two-dimensional solutions and, in
the direction of flow, become progressively more tilted and distorted.
This deviation of the flow surfaces from their assumed orientation is
caused by spanwise variations of blade loading and, in rotating blade -
rows, by rotation of the fluid particles relative to the passage in a
plane normal to the axis of the blade row. This rotation is required
to maintain the rotational or irrotational character of the absolute
fluid motion.
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The deviation of flow surfaces is considered in reference 5, but no _
. attempt is made to estimate the magnitude of this phenomenon. An ana- ’
lytical investigation has therefore been made at the NACA Lewis labora-
tory in order to determine the magnitude of this deviation in rotating
axial-flow passages. The axial-flow passages in this investigation are
bounded by straight blades of finite spacing and infinite axial length
lying on meridional (axial-radial) planes. The solutions have been made
for three-dimensional, incompressible, nonviscous, absolute irrotational
£1luid motion over a range of blade spacings and hub-tip ratios. These
solutions do not investigate the effect of spanwise distribution of blade
loading, which was considered of secondary importance. (Note that, as in
rectangular elbows with potential flow, uniform spanwise loading has no
effect on the deviation of flow surfaces.) Likewise, the effects of -
compressibility have not been investigated because, as clearly indicated
by the correlation equations in reference 1, the eddy flow, which causes
the flow surfaces to deviate, is little affected by compressibility.

The results are presented in such-a manner as to apply to any ratio of
plade-tip speed to axial velocity of the fluid.

2617

METHOD OF SOLUTION

The method of solution, including the relaxation solution of the
differential equation of flow and the superposition of solutions, is
developed in this section.

Preliminary Considerations

Assumptions. - The absolute flow is assumed to be irrotational.
The fluid is assumed to be nonviscous and incompressible. The fluid
motion is three dimensional and is steady relative to the rotating

passage.

Coordinate system and velocity components. - The cylindrical
coordinate system r, 6, z 1s shown in figure 1. (All symbols are
defined in appendix A).  The linear coordinates r and z are expressed
as ratios of the blade-tip radius. Thus, for example, the radius r
at the blade tip is unity. The coordinate system is fixed relative to
the passage which rotates about the z-axis in the positive direction
according to the right-hand rule.

The velocity components u, v, W relative to the coordinate system
in the r, 6, z directions, respectively, are also shown in figure 1.
The velocity components and the blade speed are expressed as ratios of
the blade-tip speed. Thus, for example, the blade speed at any radius -
is equal to r and the absolute tangential velocity component becomes '

(v +1).
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Type of passage geometry. - The rotating axial-flow passages in

this investigation are infinitely long. Each passage is bounded by a
hub and casing of constant radius, respectively, and by straight blades
of finite spacing and infinite length lying on meridional (axial-radial)
plenes. The blade inlet is considered to be at minus infinity in the
z-direction and the blade exit at plus infinity. Under these circum-
stances the flow is uniform in the z-direction at the region investi-
gated (near the origin, z = 0) and the blade loading is zero. Thus,

" effects of blade loading on deviation of the flow surfaces are not inves-

tigated in this report. These effects are considered of secondary
importance. :

Superposition of solutions. - For the passage geometry just
described, the incompressible flow solution can be separated into two
parts: (1) the rotating or eddy-flow solution in the rotating passage
with no through flow and (2) the through-flow solution in the station-
ary passage with no eddy flow. The eddy-flow solution does not change
in the z-direction and is therefore two dimensional. The through-flow
solution is a uniform axial velocity w. Various percentages of the
two solutions can be combined by linear superposition to obtain new
solutions for different ratios of axial velocity to blade-tip speed,
that is, for different values of w.

Eddy-Flow Solution
The eddy-flow solution is two dimensionai and lies 1in the re-plane.‘

Continuity. - A fluid particle on the roO-plane is shown in figure 2.
From continuity considerations

g% (ru)-fg% =0 = . (1)
A stream function V satisfies equation (1) if defined as
g% = ru | (Za).
’ %‘g = v ' (2b)
Trrotational absolute motion. - For irrotational absolute motion,

the circulation of the absolute velocity around the fluid particle in
figure 2 is zero, and therefore

g% [Zr + v):] - %% =0
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or
dv . v 1 du
Str-roe- ¢ | o (e
which, after substitution of equation (2), becomes
R \2
OV 1, 1% _, | ~ (3b)
or2 T OT Ty 3R ™
Equation (3b) is the differential equation of flow that determines the
distribution of V¥ for the eddy-flow solution in the r&-plane.
Transformation of coordinates. - In order to solve equation (3) by
relaxation methods, it is convenlent to transform the ré-plane onto the
t 6-plane by means of ‘ ' :
E =Inr : (4)
from which equation (5b) becomes
2 2 - -
, é—%-+ é—%-: 2r? (5) : ’
ot 06
Relaxation solution. - Equation (5) is solved by relaxation methods

(references 6 and 7, for example) to satisfy the specified boundary
conditions. For the eddy-flow solutions, there is no flow through the
passage so that V¥ 1is zero along the hub, shroud, and blade surfaces.
In the #6-plane these boundaries form a rectangle within which is placed
a grid of equally spaced points. At each of these grid points the value
of ¥ required to satisfy equation (5) in finite difference form is
determined by relaxation methods. The size of the grid spacing varies
among examples and will be indicated later. The values of V¢ at the
grid points were relaxed to a unit change in the fifth decimal. The
velocity components are obtained from the distribution of Y according
to equation (2). The streamlines of the eddy flow in the rf-plane are

lines of constant V. :

Combined Solutions

For the eddy-flow solutions on the ré-plane, the fluid rotatés
relative to the passage walls in a direction opposite to that of the
blade rotation. This fluid motion is the same for all planes normal to
the z-axis. For the through-flow solution the axial velocity w is - .
everywhere constant. These two linear solutions can be superposed to
obtain solutions for three-dimensional flow through rotating axial-flow

passages.
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It is desired to determine the flow surface generated by the
motion of any fluid line that extends between boundaries in the ro-plane
and always consists of the same fluid particles. This fluid line
rotates with the fluid in the ré-plane and the surface that it generates’
depends on the velocity w with which it moves in the axial direction
through the passage. Examples of such flow surfaces are shown in fig-
ure 3. The shape of these surfaces can be indicated on the rf-plane
alone by plots of the intersections of these surfaces with the r@-plane
at equal increments of z. These intersections are the positions of the
£1luid lines on the rO-planes at these values of z. If, instead of
increments of z, however, fluid lines are plotted on the rb-plane for
increments of the absolute angle o that the passage has rotated about
the z-axls, these fluid-line positions apply for all values of w. For
a given value of a, the value of z then depends on w and this rela-
tion is given by '

z =W ‘ ' B (8).

Thus the results of the combined solutions are plotted as fluid-line
positions in the rf@-plane for equal increments of « and these results
(fig. 4(a), for example) apply for all ratios w of through-flow velocity
to blade-tip speed. The three-dimensional flow surfaces in figure 3
correspond to the fluid-line positions shown in figure 4(a) for w

equal to 0.8. .

NUMERICAL EXAMPLES

The results for three-dimensional flow through five rotating axial-

" flow passages are presented in figures' 4 to 8. The results are pre-

sented in the rf-plane by streamlines w* of the eddy-flow solution and
by fluid-line positions o of the three-dimensional flow surfaces. The
streamlines are designated by _w*, which is defined as

A S

Wmin ~

where the subscript min refers to the algebraic minimum value of V¥

so that V* varies from zero along the boundaries to 1.0 at the point of
minimum VY. The fluid-line positions in the rf-plane are indicated for
various values of the absolute angle o that the passage has rotated
about the z-axis from its initial position (a = 0) at which the fluid-
line positions are radial or circumferential lines. In conformity with
reference 5, flow surfaces with initial fluid-line positions that are
circumferential or radial lines are designated Sq- or Sz-surfaces,

respectively.



6 | NACA TN 2834

Passage configurations- - The geometry of the five axial-flow
passages investigated is described in table I. 2

TABIE I - GEOMETRY OF AXTAL-FLOW PASSAGES

Example |Hub-tip|Blade spacing |  Grid
ratio JAC] spacing

, ~ Th |radians| deg : ™
I(standard)|0.70000(0.17834|10°13" (Ae/s)v= 0.02229 &

II .70000| .08917| 5° 7' | (A8/8) = .01115

III .70000| .35667|20026' | (A6/8) = .04458

Iv .50105| .17834|10013' | (A6/8) = .02229

v .89453| .17834|10°13" | (A8/16)= .01115

The results of the standard solution, example I, are compared with the
results of examples II and III to determine the effect of varying the
blade spacing A6 with constant hub-tip ratio rp. The results of
example I are also compared with examples IV and V to determine the
effect of varying rp with A6 constant. The grid spacings used in
the relaxation solutions are given in the last column of the table.

Standard solution. - Results for the standard solution (example I)
are presented in figure 4. In figure 4(a) are shown fluid-line posi-
tions of the central flow surfaces for various values of the angle «.
The central flow surfaces are defined as those surfaces for which the
fluid lines pass through the point of minimum ¥, that is, W* = 1.0.
At this point, values of u and Vv are both zero so that the central
flow surfaces pivot about a straight line in the z-direction through

this point.

In figure 4(v) are shown the fluid-line positions of off-center
S1-surfaces for various values of the angle a. For any off-center flow
surface, the envelope of the fluid-line positions for various values of
o is a streamline. This fact is clearly shown by the upper 8j-surface
in figure 4(b) which is tangent to the streamline 0.8.

_ Fluid-line positions of off-center Sp-surfaces for various values

of « are shown in figure 4(c). Finally, in figure 4(d), are shown
fluid-line positions of the central S;-surface for a wide range of «.
As a increases, the surface becomes progressively more distorted because
its velocity in the ro@-plane along the boundaries near the corners is
low, becoming equal to zero at the corners, whereas the velocities along
most of the other eddy-flow streamlines approach a wheel-type distribu-
tion with zero velocity at W* = 1.0. It is concluded that, for large
values of the absolute angle «, the flow surfaces become greatly

distorted.
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Solutions for effect of blade spacing. - Examples II and III are
presented in figures 5 and 6. These figures, together with figure 4(a),
indicate the shapes of the central flow surfaces for three blade spacings
AO with the same hub-tip ratio rp. The general appearance of the
central Sj-surfaces is similar for examples I and II, and in example III
the S1- and Sp-surfaces are similar. Reasons for these similarities are
given in DISCUSSION OF RESULTS.

Solutions for effect of hub-tip ratio. - Examples IV and V are
presented in figures 7 and 8. These figures, together with figure 4(a),
indicate the shapes of the central flow surfaces for three hub-tip ratios
ry, with the same blade spacing A6. The general appearance of the
central Sj-surfaces of examples I and IV is similar, and the S;- and
So-surfaces of example V are similar to the S»- and Bj-surfaces, respec-
tively, of example I. Also, it is noted that the central Sy~ and S52-
surfaces of examples II and IV are similar in general appearance. Rea-
sons for these similarities are given in DISCUSSION OF RESULTS.

DISCUSSICN OF RESULTS'

Some of the results presented in figures 4 to 8 are discussed, and
the deviations of the flow surfaces from their initial positions for o
equal to zero in the r6-plane are investigated.

. Typical value for «. - The results in figures 4 to 8 are presented
as fluid-line positions in the rf-plane for even increments of a. Ag
already defined, o is the absolute angle that the axial-flow passage .
has rotated about the z-axis, with o equal to zero when the initial

. position of the fluid line is a circumferential line (Sy-surface) or

radial line (Sz—surface) in the r6-plane. This angle o is related to
the geometry and operating conditions of the axial-flow passage by
equation (6). In order to determine a typical value for a, an axial-
flow stage is considered with

w' = 550 ft/sec
z! = 0.12 £t (1.44 in.)
o' = 838 radians/sec (8000 rpm)

where the prime superscript indicates dimensional quantities. Equa-
tion (6) becomes

z'w'
Wl

o = = 0.183
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so that a typical value for o is approximately 0.2. From figures 4 to
8 it is therefore concluded that the deviation of flow surfaces in
typical axial-flow blade rows is not large. This conclusion is further
strengthened if the fluid-line position for o equal to zero is con-
sidered to occur halfway through the blade row. Then the maximum
deviation of the surface from its position at o equal to zero is
reduced by approximately one half. ‘

For blade rows (not necessarily axial flow) with relatively large
dimensions in the direction of flow, such as radial- and mixed-flow
impellers, the deviations of the flow surfaces must be large. However,

even these large deviations do not invalidate the two-dimensional solu- .

tions completely, because, as shown in reference 8, at many positions
in the passage the velocity components of ma jor. importance are much the
same for two- and three-dimensional solutions.

Deviation of flow surfaces. - The deviation of flow surfaces from
their initial orientation, given by fluid-line positions in the rf-plane
at o equal zero, can be described by three factors (fig. 9): (1)
displacement, in the ré@-plane, of the tangent point between the fluid
line and the tangent streamline; (2) rotation, in the ré-plane, of the
fluid line about this tangent point; and (3) distortion or bending of
the fluid line in the r6-plane. The displacement of the tangent point
is determined by its motion in the ré-plane along the streamline with
which the fluid line is tangent. This displacement for off-center 5j-
and So-surfaces is indicated in figures 4(p), 4(c), and 9 and will not
be discussed further. For central flow surfaces, which will be con-
sidered exclusively hereinafter, the tangent point (center point) does
not move and the displacement is zero. ”

The rotation of central flow surfaces will be measured by the angle v

B - Bp which the tangent to the fluid line at its center point rotates
in the r6-plane from its initial position Bg at o equals zero '
(fig- 9)f The angle B 1s measured clockwise from the radial direction
so that Bgo is 90° for Sj-surfaces and 0° for Sp-surfaces.

The distortion of the flow surfaces will be diséussed gqualitatively.

i

Rotation of flow surfaces. - The rotation of central flow surfaces
is measured by the angle B - Bp introduced in the preceding section.
This angle can be measured in figures 4(a) and 5 to 8. However, an »
equation has been developed (appendix B) by which the rotation B - Bp
can be detegmined directly from o and a parameter A, which is'the
value of g—% at the center point.

: T

2617
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For central S;-surfaces

tan(p - Bo)y = - /\/Z—A—A- tan l:o, NA(Z - A):l  (7a)

and for central Sp-surfaces

oy _
tan(B - Bglp = - ’\"z'TK tan[a, A/A(2 - A):I _(7b)
so that the rotations of the two types of central flow surface are
related by '

san(s - Bo)y = (2 +2) tan(p - Bo)e (7c)

In partiéular, for A equal to 1.0,
(B - 50)1 = (B - Bo)z = (7d)

so that the rotation of both flow surfaces are equal to the rotation o
of the passage about the z-axis. .

As will be discussed later in this section, the parameter A is

. in 1y, In Ty o |
primarily a function of =5 If —5 is zero, that is, if ry is

1.0 and A6 1is finite, v and 8% are zero at the center point and
equation (3a) gives o

ov _
Py -2
from which
\ W v
T o2 Ot
In r _
Also, if Y is infinite, that is, if A6 1is zero and rp 1is less

than 1.0, g% is zero at the center point so that

A—?.z_\lr=—av=o
T ol or
lnrh
varies

Thus, the parameter A varies between O and 2.0 as
between -o and 0. For A equal to O, equations (7a) and (7b) become
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tan(p - Body = -2 (7e)

and

\

tan(p - Bg)p = O (7£)

Likewise, for A equal to 2.0, equations (7a) and (7b) become

tan(B - Bg)y = © . (7g)

2617

and

tan(p - Bglp = -2 (7h)

The rotation (B - Bg)y of central Sj-surfaces has been computed

by equations (7a), (7e),.and (7g) and is plotted in figure 10 as a func-
tion of « for various values of A. The rotation (B - Bglp of

central Ss-surfaces is also given by figure 10 if the curves of constant .
A are numbéred in reverse order. Thus, discussions relating to the ‘ ,
rotation of central Sj-surfaces with parameter A equal to x also

apply to the rotation of central So-surfaces with A equal to (2 - x).

In figure 10 the curve for A equal to zero is asymptotic to n/z,
or 1.5708. For this value of A, the passage width is zero (ne = 0), .
and the central Sj-surface cannot rotate more than n/2 radians. For
A equal to 2.0, the rotation (B - Bg)y is zero at all values of «.

For this value of A, the passage height is zero (ry, = 1.0), and the

central Sj-surface cannot rotate. As indicated by equation (74), a
linear relation exists between (B - Bg)p and o for A equal to 1.0.

As will be shown later in this section, for this value of A the average
passage width is approximately equal to the passage height (example III,
fig. 6), and both the central S;- and So-surfaces rotate at the same

rate as the passage itself, but in the opposite direction. For the
remaining values of A, the curves in figure 10 have inflection points

at ‘(B - Bo)l equal to ﬂ/2; 7, and so forth. For values of A less

than 1.0, the rate of change of (B - Bp); with a is minimum at

(B - Bg)y egqual to %,'3%, and so forth, and is maximum at (B - Bg)y
equal to =, 2%, and so forth. For values of A greater than 1.0, the
reverse is true. In all cases, the rate of change of (B - Bg)p - with

a 1is greatest when the tangent to the fluid 1line at its center point is
oriented in the direction of minimum distance between passage walls and
is least when the tangent is oriented normal to the direction of minimum
distance. This observation is reasonable because, as indicated by the

streamline spacing for examples I to V, the gradient of the velocity .
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component normal to the tangent of the fluid line at its center point,
which veloecity gradient causes the fluid line to rotate about its center
point, is maximum when the tangent is oriented in the direction of min-
imum distance between passage walls and is minimum when the tangent is
oriented normal to the direction of minimum distance.

The parameter A, which determines the rota{%on of the central flow
T

surfaces, is primarily a function of the ratio _fEEE' The values of A

for examples I to V have been obtained from the relaxation solutions and
are given in table II together with the values of ’

TABIE II - VALUES OF PARAMETER A

1n rh
Example| A D
I 0.314| -2
1T .134| -4
IIT 1.020| -1
v .240 -3%
5
Vv . -2
1.535 3
n Ty n Ty .
These values of A and are plotted in figure 11. As

A6
previously discussed, the parameter A is equal to 2 and zero' for -

In r
h equal to zero and -, respectively. It can be shown analytically

r
that the curve in figure 11 has zero slope for =<5 h equal to zero.
varies from zero to -, the passage geometry in the ro-plane

As = Qh

varies from a wide shape with zero height in fhe r-direction to a tall
In r

shape with zero width in the 6-direction. For =g equal to -1.0,

the passage geometry is square in the f6-plane and the average passage

width in the rO-plane is approximately equal to the passage height

(example III, fig. 6).

In r
The parameter _A -is a function of 0 because passages with
T ;
the same value of _fZEE have geometrically similar boundaries in the

€6-plane, where the solution of equation (5), which solution determines
A, is obtained. The right side of equation (5) indicates, however, that

the solution of equation (5), and therefore the value o{ A, depends not
nr

only on the passage shape in the £9-plane, that is on g’ but also
on the corresponding values of r at each value of ¢. Thus, the
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value of A must also depend on the hub-tip radius ratio 1ry. However,
figure 11 shows that 1r) has only a small effect on A for the range

of ryp " investigated.

For the range of o investigated by the numerical examples
(0< o <1.0), figure 10 shows that the variation in (B -'Bg)y vith o
is similar for 0 <A< 0.3 (also compare examples I, IT, and IV in
rigs. 4(a), 5, and 7, respectively); and, if the curves of constant A
are numbered in reverse order, figure 10 indicates the variation in
(B-Bg)p with o is similar for 1.7 < A < 2.0. In both cases the
rotation of the central flow surfaces is similar for the specified range

. in r
of A Dbecause for this range the corresponding values of ——ZEE

(fig. 11) are such that the passage walls parallei to the initial posi-
tions (a = 0) of the central flow surfaces are too far removed to
exert an important influence on the rotation (B - Bg), which is therefore

affected primarily by the angle o. It is therefore concluded that:

: 1n ry
(1) Eor values of Aeh algebraically less than -2, the rotation of
central Sl-surfaces is about the same for o less than 1.0; and (2) for
' Inrx

values of algebraically greater than -0.5, the rotdation of cen-

h
G

tral Sp-surfaces is about the same for a less than 1.0.

N ] 1 . ’ B ° : B

. Distortion of flow surfaces. - Factors affecting the distortion of
the flow surfaces are evident from figures 4 to 8. In general, a sur-
face becomes distorted if (1) the fluid line that generates the surface
approaches the vicinity of a corner in. the r6-plane and (2) the center,
or tangency point of the fluid line, moves closer to one of the passage
boundaries. The relative importance of these factors depends on the
particular passage geometry and the orientation of the flow surface.
From figure 4(b), if the fluid line of the off-center flow surfaces is
initially oriented (o = 0) normal to the longer side of the passage
boundary, the first factor is of major importance. From figure 4(c), if
the fluid line of the off-center flow surfaces is initially oriented
parallel to the longer side, the second factor is most important. For
central flow surfaces, only the first factor exists.

It is clearly evident from figure 4(a) that for values of @ con-
siderably larger than 1.0 the flow surfaces become greatly distorted.

Inr

Effect of Aeh' _ Table IT and figure 11 indicate an approximate
V , In r
correlation of the parameter A with the ratio _TEEE' Because A 1is

an important parameter in the calculation of the rotation (B - Bo) by

L9172
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" Inr

equation (7), this correlation suggests that _—ZEH is an important
parameter affecting the shape of the flow surfaces.
o ln r

In table II the value of ~5
and IV, and a comparison of these examples in figures 5 and 7 indicates
great similarity in the shape of the flow surfaces. Also, in table 1II,
ln Ty 26
e in T ,
order of magnitude. A comparison of the Sj- and So-surfaces of example I
in figure 4(a) with the S,- and Sq-surfaces, respectively, of example V

in figure 8 indicates considerable similarity. It is therefore concluded
Inr '
that, for the same value of Aeh’ or its inverse, axial-flow passages

of the type investigated have similar shapes of flow surfaces.

is nearly the same for examples II

for example I and for example V are of the same general

SUMMARY OF RESULTS AND CONCLUSIONS

Three-dimensional, incompressible, nohviscous, absolute irrotational
fluid motion is investigated for flow through rotating axial-flow pas-
sages bounded by straight blades of finite spacing and infinite axial
length lying on meridional planes. Solutions are obtained for five pas-

sage geometries described by various ratios of the logarithm of the hub-
In r
h, and the results are

presented in.such a manner as to apply for all ratios of axial velocity
to passage tip speed.

The solutions are used to determine the deviation of flow surfaces
from their assumed orientation in the usual type of two-dimensional
solution. This deviation is shown by the fluid-line positions (inter-
sections of the flow surfaces with the r6-plane) for equal increments of
the angle a ‘that the passage rotates sbout the z-axis as the flow
surface deviates from its initial orientation. The deviation is con-
sidered to consist in (1) displacement in the rf-plane of the center
point of the fluid line, (2) rotation in the ré@-plane of the fluid line
ebout its center point, and (3) distortion of the fluid line in the

ro-plane. .

Two types of flow surface are considered: Sj- and Sp-surfaces
initially oriented along circumferential and radial lines, respectively,
in the r6-plane.  The surfaces are central flow surfaces if they pass v
through the point of zero relative velocity at the passage center in the
ro-plane; otherwise, the surfaces are off-center flow surfaces.
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Some results of the numericai examples are:

1. The central flow surfaces rotate relative to the passage about
a straight axial line through the point of minimum stream function near
the center of the passage in the rf-plane.

2. For any off-center flow surface the envelope of the fluid-line
positions in the ré-plane for various values of o is a streamline.

2617

Some conclusions resulting from the numerical examples are:

1. For values of a corresponding to conditions in typical axial-
flow blade rows, the deviation of flow surfaces is not large.

2. For values of o less than 1.0 radian, the rotation of the
lIlI‘h

central Si-surface is about the same in all passages for which —G
is algebraically less than -2.0.

T
central Sp-surface is about the same in all passages for which —%7—
is algebraically greater than -0.5.

3. For values of o less than 1.0 radian, the rotation of %ﬁe

4. In general, a flow surface becomes distorted if (a) the fluid
line that generates the surface approaches the vicinity of a corner in
the ro-plane and (b) the center point of the fluid line moves closer to

one of the passage boundaries.

5. For values of « considerébly greater than 1.0 radian, the flow
surfaces become greatly distorted. :

In r
6. For the same value of ——ZEE, axial-flow passages of the type

investigated have similar shapes of flow surfaces.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Cleveland, Ohio, August 1, 1952
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APPENDIX A

SYMBOLS

The following symbols are used in this report. All symbols are
dimensionless, unless otherwise specified. Velocities are expressed as
ratios of the passage-tip speed; dlstances are expressed as ratlos of
the passage-tlp radius.

52
or

(y* = 1.0) about which the central flow surfaces rotate,
equation (B3a) of appendix B

<

L1932

A parameter, which is the value of at the center point

g

r,0,z cylindrical coordinates relative to rotating passage (fig. 1)

S flow surface generated by motion through passage of any fluid
line consisting of the same fluid particles and extending
from one boundary to another in rf-plane

s arc length along flow surface in rf-plane

u,v,w relative velocity components in r, 6, z directions, respectively,
(fig. 1)

o absolute angle that passage has rotated about z-axis from
initial position at which fluid lines for S;~- and Sz-surfaces
are circumferential and radial lines, respectively, in
ro-plane

B angle of tangent to fluid line at its center point in r6-plane,
measured clockwise from radial direction .

aXC] blade spacing in roO-plane

4 transformed coordinate, equatioh‘(4)

¥ stream function in rO-plane, equation (2)

W‘ stream funcfion ¥ divided by V¥, , equation (7)

Q relative angular velocity of elemental arc ds, of central flow
surface, rotating about point ¥* = 1.0 in r6-plane, expressed

as ratio of '

o' absolute angular velocity of passage about z-axis, dimensional
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Subscripts:
h hub (so that r, 1s hub-tip ratio)

min minimum

0 initial position, wheh_ a equals zero

1 flow surface with circumferential line for initial position of
fluid line in r@-plane '

2 flow surface with radial line for initial positlon of fluid line
in r6-plane

Superscript:

! dimensional quantities

2617
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APPENDIX B

ROTATION OF CENTRAL S,- AND S,-SURFACES ABOUT THEIR CENIER POINT
IN r6-PLANE

If ) is the relative angular velocity, expressed as a ratio of
the absolute angular velocity of the passage about the z-axis, of an
elemental arc length ds rotating about the point ¥* = 1.0 in the
ro-plane, then from figure 12

Qads = %% dsvcos B - %S ds sin B (B1)
where N
and

gE g& cos B + = 3— sin B : (Blb)

At the point for ¥* = 1.0, however, u and v are equal to zero and,

. because the streamlines are normal to the passage center line,

%P- =0 (B2a)

so that the continuity equation (1) gives
ov

Sg = O | (B2b)
and equation (3a) becomes
1 du _ ov
s8=2+5 - (B2c)

From equations (Bl) and (B2)
Q= %% (cos? B - sinzB) - 2 sin?B

or, from equation (2b),

-Q =4 +2(1 - A) sinp . (B3)
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A== | (B3a)

- 3
Q = day
so that, from equation (B3),
p
o= - dp
A+ 2(1 - A) sin®p
0

oxr

‘ a = A(; — [‘ban'l A ’2 A A tan BO) - tan™t (/\’2 AA tan é] (B4)

For central Sj-surfaces, Bg equals 90° so that

tan Bl = A{-z——'p:-—'A- tan [—g— - (L/:\/A(Z - A):I

and

2 - A
tan(B - Bo)l = - h’ X tan l:d, NA(2 - A)] ' (7a)
" For central S,-surfaces, B equals O so that '

tan By = /\fz*t_\_Atan[- mm

and

tan(p - o)z = - /\fz 2 tan [« /AZ -8 | (7b)'

2617
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z-axls

Direction | ;
of rotation

Figure 1. - Cylindrical coordinates and veloclty
components relative to rotatling passage.

Flgure 2. - Fluld particle
in ré-plane.
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Direction of
rotation
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Figure 3. - Central S;- and S,-surfaces for éxample I with axial velocity w
equal to 0.6.
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Direction of rotation
——

Se-surface y*
A —— 0
1.00 —
4.2 iy
.‘86 .6 a
1.0
afl.0 .8 fF
.95 R ‘ﬁ Sl-surface
!
.2
.9165 0
.90
p
@
3
s .85
&
i1
.80
.75
.70

Angle, 6/A8

Figure 5. - Fluld-line positions of central
S;- and Sy-surfaces for example II., Hub-
tip ratio, ry,, 0.7000; blade spacing, A6,
5971; minimum value of ¥, -0.00157.
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Figure 6. - Fluld-line positions of central S;- and Spy-surfaces for example III. Hub-tlp
ratio, Ty, 0.7000; blade spacing, A8, 20°26'; minimum value of ¥, -0.01318.

S2-surface

Direction of rotation

PR EE————— .

C .%
| | | \
; 3

1 5
z 3

Angle, 6/A8

Sy -surface
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Direction of rotatlon
e S,
Se-surface
1.00 L]
4 -2 0 [+1
-6 1.0
.8
95 | a/1.0 .8
.6
S, -surface
.4
.90}
.2
8647 0
.85
.80
3 -
@
% ¥*
S 0.8
4 »
V15
.10}
.65 -6
.60
4
. 55—
.2
| 1ol J "!'El:
SOLLE=T"1 31 5 3 7 1 -
8 T 82 B 17
_ Angle, 6/A8 >
Figure 7. - Fluid-line positions of central 8.~ and
S2-surfaces for example IV. Hub-tip ratlo, rp,
0.50105; blade spacing, A9, 10°13'; minimum value . -
of ¥, -0.00544,
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1.00

Direction of rotation

— -

Sp-surface

.90

a6 -6 ACR % g
l-o .6
.4
.2
0
w
0.8
.6
4
. 2]
\ | [0] |
T 1 3 1 5 3 7
° 3 ¥ ¥ % ¥ % v *?

Figure 8. - Fluid-line positions of central S;- and Sp-surfaces

Sl-surface

for example V.

10°13'; minimum value of ¥, -0.00231.

Angle, 6/A8

TRAcA

'

Hub-tip ratio, rp, 0.89453; blade spacing, A8,

27




28 . NACA TN 2834

Direction of rotation
-

Fluld-1llne positions
of Sl-surface

Displacement
of tangent
polint .

Tangent to fluild
line of S;-surface

Streamline

+

Tangent
point Lopjentation

for a = 0O

Detall A showing
rotation (B - 60)1
at tangent point of
fluld-line for
a >0

|

Figure 9. - Definitions of terms used to descrilbe deviation
of flow surfaces from initial orientation in ré-plane at

a = 1,0,
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7
/

% an
Vg

//77'
/

7
/o

' Angle a, radians

|- Parameter
A

<]

sueTpBI ..:ou - d) uotgeioy

Figure 10. - Varliation in rotation (B - ﬁo)l of central §)-surfaces with angle a.

Equation (7a).
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dr
—
y*=1.0—9¢

rdéo

31

S8 ds

ds

&1

B

Y

ds

Figure 12. - Elemental arc ds of a fluid line rotating about
‘point at which stream function ¥*= 1.0 in r6-plane. ‘
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